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Abstract. Analytical techniques are described for transforming the Green’s function for the two-dimensional
Helmholtz equation in periodic domains from the slowly convergent representation as a series of images into forms
more suitable for computation. In particular methods derived from Kummer’s transformation are described, and
integral representations, lattice sums and the use of Ewald’s method are discussed. Green’s functions suitable for
problems in parallel-plate acoustic waveguides are also considered and numerical results comparing the accuracy
of the various methods are presented.
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1. Introduction

A very useful technique for solving scattering problems in which the scatterer is periodic
involves the formulation of an integral equation in which the kernel is a periodic Green’s
function. The numerical solution of this integral equation requires numerous evaluations of the
Green’s function and so the feasibility of the method is strongly influenced by how efficiently
this function can be computed. Unfortunately, standard representations in terms of sums of
images usually contain series which converge very slowly and so are unsuitable for numerical
work.

Of interest in many branches of physics and engineering is the case of gratings, structures
which are periodic in one dimension only, and for such scatterers many problems concerning
time-harmonic waves involve the solution of the two-dimensional Helmholtz equation. The
literature concerning such problems is vast, see for example [1, 2], and a great deal has been
written about the appropriate fundamental solution for such problems.

Information on periodic Green’s functions is scattered far and wide, in articles on such
diverse topics as electrostatic potentials in crystal lattices and trapped modes in the theory of
water waves. Moreover, mathematical conventions used by researchers in different areas often
differ widely, making comparison difficult.

This paper attempts to remedy the situation by bringing together, in a consistent notation,
the many different analytical techniques that can be used to represent the Green’s function in
a form suitable for computation. All of the key results in Section 2 have appeared previously,
in one guise or another, though the direct application of Ewald’s method appears to be new.
Also, the formulas for the lattice sums (Equations (2.50) and (2.51) below), although derived
nearly 40 years ago, seem to have been overlooked by researchers in this area. Whilst results
of numerical computations for each of the methods considered here can also be found in the
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literature, the comparison of the accuracy and speed of all the various alternatives, which is
given in this paper, is new.

Numerous techniques exist for accelerating slowly-convergent series. Examples include
Euler’s transformation for alternating series [3, Equation 3.6.27], Shanks transformation [4]
and Wynn’s algorithm [5]. These methods are general in the sense that they do not take into
account the actual form of the terms in the series. Such methods are not discussed in this
paper; a survey of them and their use in evaluating periodic sums of three-dimensional point
sources is given in [6].

After deriving various alternative expressions for the Green’s function in Section 2 we
discuss simplifications for the special case of normal incidence in Section 3 and applications to
waveguide problems in Section 4. Results of numerical computations comparing the different
methods are presented in Section 5.

2. Alternative forms for the periodic Green'’s function

Denote the source point by = (&, ) and the field point byD = (x, y). For convenience we
willwrite X = x —£, Y = y—n andr = (X24Y2)z. The Green’s function for the Helmholtz
equation in an unbounded region satisfies

(V24 k%G =0, P+ Q, (2.1)
1

G~ —logr askr—20 (2.2)
2

or equivalently, see [7],
(V2 +KG = 8(X)8(Y), (2.3)

whereé is the Dirac delta function. We also require thatkas — oo, G exp(—iwt) be-
haves like outgoing circular waves or, in other words, thiaatisfies a Sommerfeld radiation
condition. The solution is

G = —j—lHo(kr), (2.4)

where, for convenience, we have writtéfy for the Hankel functiond".

For an important class of problems involving periodic structures we are led to seek so-
lutions of the form exp—iBy)v (x, y) wherer is periodic iny with periodd. In a wave
diffraction problem exp—iBy) then represents the dependence of the incident wave in the
direction along the grating and we hage= k sin 8;, whereg; is the angle the incident wave
direction makes with the normal to the grating. For such problems the appropriate Green’s
function, which we IabeGg, is the solution of (2.3) in a strip of widi containing the point
P together with the condition that eéqeiﬂy)G‘é is periodic iny with periodd. Equivalently

we can definch to be the solution of

(V2 4+ k%G = §(X) Z 8(Y —md) P4, (2.5)

m=—0oQ
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For future convenience we define

2

P=- (2.6)
and, since the sum is over all integeiswe need only conside# in an interval of lengttp.
In the case of oblique scattering by a diffraction grating we hake< 8 < kwith 8 = 0
corresponding to normal incidence, whereagdf < 7 thenk < B < p — k corresponds
to the problem of determining the frequencies of pure Rayleigh—Bloch surface waves along
a periodic structure (see [8]). The appropriate conditiofXds— oo is thatG‘é exp(—iwt)
consists of waves travelling away from the lixe= 0 if —k < B < k, or is exponentially
smallifk < 8 < p —k.

Perhaps the simplest form fdl‘g is a representation as a sum of images,esg49]

GHX. ¥)=—7 > Hotkr,) €, (2.7)
where
Fa = [X2+ (Y — md)?)2. (2.8)

The periodicity requirement is satisfied since

i —“— .
e PGLUX.Y +d) -3 3" Holkr,_1) &5

- .
= - Z Ho(kr,) €™ = G4(X. Y). (2.9)

One problem with (2.7) is that the series converges very slowly @k&z‘% exp(im6)) and
another is that the asymptotic form|ag — oo is not immediately apparent. Some numerical
results concerning the application of a standard acceleration procedure to the series in (2.7)
are given in [10].

An alternative representation as an eigenfunction expansion can be obtained from (2.7) if
we use the Poisson summation formula, which we can formally write as

i @ = 27 i 8(u + 2mm), (2.10)

and the integral representation ([11, Equation 2.26]),
2i [*

Ho(k(a® + b?)?) = y e Pl coskar di
T Jo

= —i_/oo y Lehribl gikat g (2.11)
T J-c

Here

y =@ -1 =—i(1— > (2.12)
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If we substitute (2.11) in (2.7) and then use (2.10), we obtain

1 > e_Vm‘X‘ e'.BmY
G4(X,Y) = —=— —_— (2.13)
g 20 2 Yin

m=—0oQ

where we have written

Bu=B+mp,  ym=(B2—k)E=—i(k?—p2)%. (2.14)

Inthe casek < B < p — k it clear thatGg decays exponentially dsX| — oo, since
|Bnl > kVm € Z, whilst if —k < B < k the form of the Green’s function aX| — oo is
given by

. N ; ;

I éktm‘X‘ éleY
GoX,Y)~ = Y 2.15
pX. 1) 2kd tw (2.19)

whereM andN are nonnegative integers such that

B-m-1 < —k < B_u., By <k < Bni1, (2.16)

and

ST o)

The derivation of (2.13), often referred to as the spectral representation of the Green’s
function, from (2.7), the spatial representation, is described variously in, amongst others, [12],
[13] and [14]. The form (2.13) can of course be obtained directly rather than from (2.7) and
this is done for example, in [15] and [16]. A rigorous derivation of (2.13), using the theory of
distributions, can be found in [1]. A disadvantage of (2.13) is that the singularity as 0
is not explicit.

KUMMER’S TRANSFORMATION

The convergence of the series (2.7) and (2.13) can be improved if we use Kummer’s trans-
formation, namely if we convert the slowly convergent series into two series which converge
faster by subtracting and adding back a series which has the same asymptotic behaviour as the
troublesome series and which can be summed analytically, see [3, Equation 3.6.26].

For X = 0(2.13) converges very slowly, like (2.7), but we can accelerate the convergence
of the series as described in [17]:
J 1 o bt
GOY = Vim

_ _% i g (i_;)_% i e o)

Y (B2 +k?)? e (B2 +KD)7
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The terms in the first summation a€x|8,,|~3) as|m| — oo and

1 & gfn¥
T

whe (B2 + K2

gy o0 /‘OO giuY/d gmu g
= - 17
dr = oo [(Bd — u)? + (kd)?)2
ét(Y md) 1 o0 )
=— gmpd / — Ko(k|Y — md|) €"F4, (2.19)
e 2+ k)t k?)z T or m:z_oo

where we have used (2.10) and an integral representation for the modified Bessel fiifaction
given in [18, Equation 8.432(5)]. This final series is exponentially convergent.

For|X| > Othe terms in the series (2.13) decay likg~* exp{—p|m X|}. Using a different
application of Kummer’s transformation, described in [19], we can accelerate the convergence
of this series. Thus we write

gbY [ e rolxi g vmlX| gmpY
GH(X,Y) = —— + Yy —. (2.20)
2d Yo meZ\ (0} Vi
Now as|m| — oo,
B k? P
Ym = |m|p <1+m_p_2m—2[)2 + O(lm[™), (2.21)
2 2
1 B ke + 28 4
= (12 TP Yo , 2.22
it = o (1= L4 ) + oami @.22)
from which
Vo - € = 4, (X) 4 O(Im| 2 7P X]) (2.23)
where
—(Im|p+sgrim)B)|X| k21X
U (X) = (1 _p LK ') . (2.24)
|m|p 2|m|p
We can then write
gdfY [ e rolxi g vmlX| _
G4(X,Y)=—— + S5+ [ — um(X):| gmrY 2.25
A 2d Yo Z Ym ( )

meZ\{0}

where, writingZ = | X| +1iY,
S = ) un(X)em’

meZ\{0}

- —m 2
e /3|X|Ze rZ (1 2,32; |X|> eﬁ\X\Ze P <1+ 2/3;rm—/;|X|>'(2_26)
m=1

m=1
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These series can be expressed in closed form in terms of polylogarithms [20]. The polyloga-
rithm function Li;(z), s > 1, can be defined by the sum

. = 7"
Lis(z) = — 2.27
(2) ;m (2.27)
which is valid for|z| < 1 except at = 1 whens = 1. Clearly Li(z) = —log(1 — z). Thus
we have
1. . . 28 —KAX| . 5
s = e P [— Liy(e7%) — Lzll le(e_pz)]
p 2p
2
+ent | Ly erzy 4 BRI ey | (2.28)
p 2p?

The polylogarithms that appear in this expression can be evaluated quickly and with high ac-
curacy providedZ| < d (see [19]). The representation (2.25) includes a sum containing terms
which decay likejm |2 exp{—p|m X|}. This acceleration process can be continued further if
we retain more terms in the expansion (2.24). The resulting analysis is straightforward (and,
as was pointed out in [21], can be greatly facilitated by the use of a computer algebra package
such as MTHEMATICA), and expressions fo@;f can be obtained containing higher order
polylogarithms.

The same idea of adding and subtracting an asymptotically equivalent series can be used
to speed up the convergence of (2.7). One method is to introduce a free pararaptewrite

GU(X, Y) = —4'_1 3" [Hotkr,) — Ho(ki,)] € — L'—l S Holk,) &", (2.29)

m=—0oQ m=—0oQ

where7,, = [(X + ud)> + (Y — md)z]%. SinceHy(kr,,) ~ Ho(kr,) as|m| — oo, the first

sum converges more rapidly than before (Ik&n =2 exp(im#)) and we can accelerate the
second sum by using exactly the same method as was described above to convert (2.7) into
(2.13). Thus,

s e_ym | X+pd| éﬁm Y

. 00 . - 1
GY(X,¥) = —4'_1 > [Holkn,) — Ho(kFy)] " — = 3 (230

m=—0oQ m=—0oQ

Note that, whernu = 0, we recover the eigenfunction expansion (2.13). The parameier
called a smoothing parameter in [22] and an attenuation constant in a study of related problems
involving periodic arrays of three-dimensional point sources [23]. Numerical results are given
in [17] which show how the computation o}‘g, using (2.30), is affected by varying.

Another way of applying Kummer’s transformation to (2.7) is to use the method given in
[24]. From [18, Equation 3.411(22)] we have

NI

0 eimu

00 s~
=7~ —d 231
mgl m% T A e&‘e—lu —_ 1 S ( )

NI
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and hence
1
Ho(kr,,) ™ = Holkr,) — [ —=— ) dmkd=5) | gmpd
mZ_l o) mz_l|: olkrm) (nmkd) i|

1 i 1
2\2e 1 [ s 2
+ (ﬁ) - /0 o o hd _ 1 ds. (2.32)
The terms in the first sum again decay like®? exp(im®) and the integral is easily evaluated

numerically due to the exponential decay of the integrand. If we perform the same analysis on
the sum from-1 to —oo we are led to the result

i i 2 3 N .
Gy(X.Y) = —zHokr) =7 ) [Ho(krm—( ) ik w} dnpd

meZ\{0} 7 |mlkd
1+i [ 1 1 gkdu
B 4 Jo |:e—i(k+/3)d — g kdu + e itk—pd _ e—kdu] u% . (2-33)

INTEGRAL REPRESENTATIONS

Another method for transformingg into a form more suitable for computation is given in
[25]. We begin with the summed geometric progression

i g@m(B+kyd g—mkdu _ ﬂ (2.34)
‘ T gkdu _ @(prhd’ '
multiply by
20 gy o COSKX (u® 2iu)?]

7 (u2 — 2iu)?
and integrate with respect tofrom 0 tooco. If we then use the result [26, Equation 5.14(16)]
et COS[a(u — 2Iu) ]

e Ho((a? + b?)? )———/ o u, b>0, (2.35)
u 2

with a = kX andb = k(md — Y), we obtain

i © k(¥ —d)u 2 _9ind
2i iKY / e cogk X (u? — 2iu)2] d (2.36)
0

> Holkr,) €" = —= . —

el T (e—l(,B+k)d _ e—kdu)(uz _ 2|u)?
valid for Y < d. If we replaceB by —g8 andY by —Y, we obtain a similar formula valid for
Y > —d. Hence for-d < Y < d, from (2.7),

i g kY oo g(Y=du codk X (u? — 2iu)?
GU(X,Y) = —= Ho(kr) — _ WX (w” — 2wzl
4 27 Jo (e i(B+hd — gkduy(y2 — Djy)z

gy oo g k(+du codk X (u? — 2iu)?]
o , —— du
2t Jo  (eF-hd — ekdu)(u? — 2iu)2

(2.37)
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The integrals have an integrable singularity at the origin and provided: d the integrands
decay exponentially as — oo.

We can generate an alternative form by making the substitutien(u? — 2iu)%?, from
whichu =i + y wherey is defined in (2.12). This results in

) i 1 e coskXi
Gﬁ(X, Y) = 4H0(kr) 27 A (e—iﬂd _ e—k}/d)y

(2.38)

1 [ ekr+d cosk Xt
2 /o (€Pd —e-hrd)y
The integrands have poles on the reakis, but the path of integration can be still be deformed

back onto the real axis, provided we indent the contour to pass beneath the poles. Thus, we
can write

G4(X.,Y) = —I—Ho(kr)— 1
4 2
0 ekyY e—kyY e—kyd
xfo [(eriﬁd_e_kyd)+(eiﬂd_e_kyd)] > coskXtdt

g - L
= T T o

coskXrdr (2.39)

y foo (cos Bd — e *rdycoshky Y + i sin Bd sinhky Y
0 y (coshkyd — cos Bd)
1 [ @PsI) ginhky Y| + sinhky (d — |Y|)

=—— COskXrt dr (2.40)
27 Jo y(coshkyd — cos Bd)

using (2.11). This is precisely the same form as that derived directly from the governing
equations in [27] and the transformation used to take (2.37) into (2.39) is just the reverse
of that used in [28]. It is straightforward to recover the far-field form (2.15) from the rep-
resentation (2.39), since, whef| < k, the integrand has poles on the real axis at 1,
m=—M,..., N whereM, N andz, are given by (2.16) and (2.17).

If k < B < p — k, there is no difficulty in evaluating the integrals in (2.39) and (2.40),
whilst if || < k, they can be evaluated efficiently if we use the method described in [11]. We
begin by writing the contour integral as the sum of a Cauchy principal-value integral and the
contributions from the poles on the real axis (which can be evaluated explicitly). The integral
is then of the form

C>O&dt,
o &)

whereg(r) has simple zeros at= t,,m = —M, ..., N, and for whichf(z,) # 0. If we
write T = maxt,,, then

N

=) =) 2t
AU mdt—i-/ AN > )y
o 8 2c 8(1) o | &0 =, 8t —1n)

N
f(tm) 2‘[
+m_2_:M 8 (tw) 09 (Z - 1) ' (2.41)
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The integrand in the second integral is integrable throughout the range of integration, though
care must be taken near to the points ¢, since at these points the integrand is the difference
between two large numbers.

We can demonstrate the equivalence of (2.7) and (2.40) directly, if we make use of the
geometrical series identity

00
Z eimﬂd e—ky\Y—mdl —

m=—0oQ

ghdsany) sinh ky |Y| + sinhky (d — |Y])
coshkyd — cos Bd

: (2.42)

valid for |Y| < d, which was used in [29] to derive rapidly convergent series for the electric
potential within a general crystal lattice. If we substitute this in (2.40) and use (2.11) we
immediately obtain (2.7).

An integral representation equivalent to (2.38) has been obtained by Cadilhac and is quoted
in [21], though the derivation remains unpublished. This representation was used in [30]
and significant computational savings were reported over methods derived from Kummer’s
transformation.

LATTICE SUMS

Another representation fc(r?% can be derived in terms of so-called lattice sums (which for
our problem are Schlémilch series) as described in [19Bfer 0 and in [31] for generaB.

Graf’s addition theorem for Bessel functions [18, Equation 8.530(2)] can be used to express
(2.7) solely in terms of the polar coordinatésf) whereX = r cosé,Y = r sin6. Thus,
providedr < d, we can write

o0

i i H o
G4(X, ¥) =~ | Holkr) + > €N Jy(kr)Ho(Imlkd) €9n &G0 | | (2.43)
meZ\{0} f=—00
where
T if m<O
- (2.44)

0 if m > 0.

The lattice sums, (8d, kd) are defined by

Se(Bd kd) = Y &P H,(jm|kd) € = > " H,(mkd)(€"* + (=1)" e"*) (2.45)
meZ\{0} m=1

and the Green'’s function can then be expressed as

G4(X,Y) = _Lii |:Ho(kr) + ) eSedelkr) cose (% . 9)} : (2.46)
=0

whereeg = 1,6, = 2 for ¢ > 0. We haveH,(mkd)J;(kr) ~ —i(m€)"1(r/md)* ast —
oo [3, Equation 9.3.1] and so the summation converges exponentially. Also the lattice sums
themselves only have to be evaluated once as they do not depend on the position aIéNhich
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is computed. However, the computationSfmust be performed with care sin6g becomes
very large and/, very small a¢ increases.

Algorithms for the computation of the lattice sur§g the real and imaginary parts of
which are evaluated separately, are given in [31]. In that paper numerical results are presented
for the calculation of the Green’s function which suggest that (2.46) can be computationally
competitive in situations where the value@ﬁ is required at a large number of points. The
formulas given for the real parts are in terms of finite sums and correspond to those given in
[32] (see below), but those for the imaginary parts seem unnecessarily complex in view of
Twersky's results. Fot = 0 we have (see [31])

Soz—l—%i[c-i—logi}—ii—gi > (i—i), (2.47)

2r] vd d o \Vmo plm]

whereC ~ 0-5772157 is Euler’s constant. The convergence of the sum can be improved if we
use Kummer’s transformation. Thus from (2.22), noting that

1
Z — =0, (2.48)
meZ\{0} m|m|
we obtain

2i k
So = —-1—— [C+Iog—]
b4 2p

2i  2i(k?+2p?) 2i Z <1 1 k2+2/32> (2.49)

- = TR -= - - —
3 3 3
Yod p°d d mezvoy \Ym  plm] 2p3|m|

whereZ (s) is the Riemann zeta function ag@3) ~ 1.2020569 [3, Section 23.2]. The terms
in the sum are) (|m|~*%) as|m| — oo.
For¢ > 0 Twersky gives

2i e 2 2 N e

S = _gm:O Ym N Zm:_l Vi =
| (1" 22 (€ +m = D) p2m
T 2_:1 2l —m)] (;) Bow(B/ ), (2.50)
21 &, g i@-Dn 2] X -1
Sar-1 = Em:O Y Em:_l i
_E -1 (_1)m22m(£ +m —1)! (£)zm+13
7 2t @m+ DI —m — 1! \K 2ant1(B/P), (2.51)
where

O = SIN"* (B / k) (2.52)
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and B,,(x) is the Bernoulli polynomial, which can be written as a finite sum [3, Equation
23.1.7]. The value ob,, is taken so that if8,,| < k, |6,,] < 7/2, whereas ifn > N (see
(2.16)) R&6,,) = 7/2,Im(6,,) < 0and ifm < —M, Re(6,,) = —7/2,Im(6,,) > 0.

The infinite sums in (2.50) and (2.51) converge fairly slowly for smalbut can be
accelerated if we use Kummer’s transformation as was dong,fée obtain

2i e—2i£90 00 {e—zwem N eZiZB,m (_1)6 ( k )2@}

Sop = — —2i
& VOd Z de V—md mi ZWlp

m=1

f e 20 .
A (i) (2041 +—
/4 2p 12,4

| (—1)" 220 (L m — D)l p2n
+;m§ 2l —m)] <;> B2y (B/p), (2.53)

2i e—i(ZZ—l)Go . o] {e—i(ZZ—]_)Gm ei(ZZ—l)H,m N I(_l)lﬁd£< k )2@—1}

Sopg = ———— +2i
20-1 +Z 2mp

Vod de y—md m?m?

m=1

T/
L 21 pa <i

20—-1
- 2p) £(20 + 1)

2 -1 (_1)n122m(£+m _ 1)! (p)2m+1

T m=0

The slowest convergence occursSpand S, in which the terms are (m—°) asm — oo.

This acceleration procedure can of course be repeated and the infinite sums in (2.49), (2.53)
and (2.54) written as sums of more rapidly convergent series together with more evaluations
of the Riemann zeta function with odd integer arguments.

EWALD’S METHOD

A very elegant procedure for the evaluation of the Green’s function associated with the
Helmholtz equation on a periodic structure was devised by Ewald [33] and is used exten-
sively in the analysis of crystal lattices. This procedure is usually described in the literature in
the context of three-dimensional lattices, seg[34], and occasionally for two-dimensional
lattices, as in [35]. Furthermore the procedure is usually applied to the case where three-
dimensional point sources are distributed throughout the lattice rather than the situation rel-
evant to the present paper, namely line sources distributed over a one-dimensional lattice.
An expression forGg found by integrating the result of [35] is given in [25], but a direct
application of Ewald’'s method to the Green’s functidlj does not appear to exist in the
literature.

The underlying idea behind the method, which is somewhat obscured by the technicalities
of its application, is as follows. Consider a functigiix) which decays slowly ag| — oo.
Then for any functionF (x) we can write

f@) = f@x / " 46 (0) do, (2.55)

1
F ——
)(X)Jr\/g
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O ald

N

Figure 1. Deformed contour for the integral representation of the Hankel function used in Ewald’s method.

whereG is the Fourier transform af (x) = f(x)(1— F(x)). If we choseF so thatf (x) F(x)
tends to zero rapidly as| — oo thenG(x) will tend to zero slowly and hence its Fourier
transformG (w) will decay rapidly asw| — oo. In fact Ewald considered the three-dimensional
analogue of (2.55) and for the fundamental electrostatic source pot¢iitipl= 1/r took
F(r) = erfc(ar), wherea is an arbitrary positive convergence parameter andgrfe-
n~ Y271 exgd—z?], largz| < 3m/4, is the complementary error function. Other forms for
F are possible of course, and a number of variations to the Ewald transform for the poten-
tial 1/r are given in [36]. An obvious choice is to talfe to be identically zero and then
Ewald’s method reduces to taking the Fourier transform, which is equivalent to the process of
transforming (2.7) into (2.13).

As was pointed out in [37], Ewald’s method applied to three-dimensional point sources
derives from an integral representation for the functtbn ,(kr) = (2/mkr)Y? explikr} and
so to apply the method in our case we begin with the equivalent representatifiy(fam).
Thus after a change of variable [18, Equation 8.421(8)] becomes

2i oo exp—in/4]
Ho(kr) = == / ute g gy (2.56)
0

In the analysis which follows we assume thahas a small positive imaginary part, but the
final result is valid for reak by analytical continuation. In (2.56) the contour is the line
argu = —m/4 and this can be deformed into two parfs,and (a/d, co), wherea is an
arbitrary positive constant, as shown in Figure 1.

This integral representation can be substituted in (2.7) and we c(bﬁaifl G1+ Gy where

o0
Gy = _i ul e—XZMZ e[cz/4u2 Z gmpd e—(Y—md)2u2 du, (2.57)
27'[ r M0
1 & o
i 2,2 2 252 2
Gy = 0 Z émﬂdfl u—teaTru/d” gktdt At gy (2.58)
m=—0oQ

In order to writeG1 in a convenient form we consider the function

Yy =eFY Z dmpd (¥ —md)%u? (2.59)

m=—0oQ
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which is periodic with period and hence can be expanded as a Fourier series. Thus

o0

f@)y =3 a0, 2.60
where
_ 1 /d f(Y) e_ZninY/d dy = 1 i eimﬂd /d e_i,BnY e_(Y_md)ZMZ dy
" d 0 N d m=—00 0

1 & —md-+d 1 oo
= — Z eimd(ﬂ_ﬁn) / e—i,BnS e—yzuz ds — = / e_iﬁns e_s2u2 ds
d dJ_

m=—00 —md o0

8_53/4"2 o 2001 2y2 JT% 20,2
_ / e PGt /222 g T2 o2/ (2.61)
d _ d

provided|argu| < /4 which is the case for all onT". Note thatf (Y) is a theta function and
the derivation of (2.60), (2.61) corresponds to Jacobi's imaginary transformation, [38, Section
21.51].

The Fourier series fof (Y), (2.60), can now be substituted in the expression (2.570for
resulting in

00 u

o0

1 .
Gi=— 3 et / u—2 e X4 g/ gy (2.62)

1
2r2d ==, r

wherey,, is defined in (2.14). Now we make the change of variabte 1/s so that

1 S ) oo expin/4] - -
Gr= —— dfnY / X252 gV g (2.63)
2rad dfa

If 2 > 0 the contour of integration can be deformed back to the real axis, whereas:if0
the change of variable = ir leads to an integral from-id/a to co exp—ix /4] which can
be deformed into an integral fromid/a to co. In either case an application of [3, Equation
7.4.34], shows that

1 o b Yud —aX Yud — aX
Gi=—— emXerfc| 2= + —— X arfe| 2= — ) |. (2.64
= 2 ym[ r(2a+d>+e r(Za dﬂ (269

m=—0oQ

The final exponential in the expression @ can be expanded as a power series and hence
we obtain the following expression for the periodic Green’s function:

1 o @b Ymd — aX Ymd —aX
Gi(X,Y) = —— emXerfo| 2= + — e Xerfc £ — =
e = g 3 e tere( B ) e ero ()

m=—0oQ

1 & 1 (kd\Y a®r2
i gmpd — (=) E, —m 2.65
4 ;n! (2a> +l< d? > (2.65)

m=—0oQ
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whereE, (x) = ffo u e du ~ x~1 e * asx — oo is the exponential integral.

The constant: in this expression is positive but otherwise arbitrary and by varyitige
convergence of the two series is affected. Increasionguses the second summation to con-
verge faster and the first slower. A discussion of the considerations relevant to the choice of
is given in [25]. The numerical evaluation of the exponential integral presents no problems and
the same applies to the complementary error function when the argument is real. An efficient
algorithm for computing erf) is given in [39].

3. Normal incidence
When g = 0, corresponding to normal incidence, some of the preceding expressio@s for

simplify considerably. Thus, since from (2.14) = y_,, = (m?p? — k>)Y? whenpg = 0,
(2.13) becomes

GHX. V)= -3 & e mlXl cosmpY, (3.1)
m=0 "M
and
. M
GL(X, ) ~ —ﬁ Yo " b cosmp, (3.2)
m=0 "

whereM is a nonnegative integer such thidp < k < (M + 1) p.
The integral representations (2.37), (2.39) and (2.40) reduce to

i 1 Y(u— X —2i
Gg(X, Y) = —I—Ho(kr) B _/ cosHkY (u —i)] cogk X (u? Iu)2] (3.3)
4 7 Jo (=) — 1) (42 — 2iu)?
[ 1 [*° coshkyY coskXt
= ——Ho(kr) — — 3.4
FHotkr) = — - T ZE (34
1 (> /. kyd kX
_ —f sinhky 7| — coth™ 2% coshiy ¥ ) S5 ;. (3.5)
27 Jo 2
From (2.45) we see that the lattice sum$0, kd), £ € N U {0}, satisfy
S20(0, kd) = 22 Hyy(mkd), 820410, kd) = 0, (3.6)
m=1
and the Green'’s function can then be expressed as
Gi(X,vY) = —4'—1 |:Ho(kr) + Z(—l)ZGZSZngg(kV) Ccos 29} . (3.7)
=0
Now S is given by (2.49) withg = 0 and from (2.50)
2i & e—zwem i (— 1)'1122"1 (L +m—1)! /p\2m
So = —— = - 3.8
R DI Z B (&) P G

m=0
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whereB,,, = B, (0) are the Bernoulli numbers.
For 8 = 0, Ewald’s method gives

1 & cosmpY
Gi(X,Y) = == ep——
4dm=0 m
Ymd X _ Ymd aX
emXerfc| 2= + — e Xerfc 2= — =
[erere( + )+ e - )
1 ié il kd ”1E a?r2 3.9)
A " n!' \ 2a T2 ) '

m=0 n=0

It is also worth noting that simplifications also arise whgee:= v /d. Thus for this value of
B we havey,, = y_,,—1 = [(m + 3)?p? — k?|*/2 and hence, from (2.13),

l x© e_ym‘X‘
Gl (X, Y) = -5 > —— cosm + Lpy. (3.10)
m:O m
We also have
Ge (X, Y)=G§(X,Y) - G¥(X.Y —d) (3.11)

which can be derived very simply from (2.7). The relationship between problems in which
B =0andg = /d (whenkd < m) has been utilized previously in [8] and [40] to show that
aspB — = /d pure Rayleigh—Bloch surface waves along certain periodic gratings go over to
channel trapped modes.

4. Waveguide problems

For scattering problems in a parallel-plate waveguide of witlthis appropriate to consider
a Green'’s function which, rather than being periodic, satisfies given boundary conditions on
y = 0 andy = 4 and which are singular &, n) where O< n < d. Below we will consider
the case of Neumann and Dirichlet boundary conditions, corresponding to acoustically hard
and soft boundaries, and denote the Green’s functions for these problefi$ bnd G¢,
respectively. Thus
d

ag—yN =0 and G4, =0 ony=0,d. (4.1)
We will also consider the case of a Green’s function which satisfies a Dirichlet condition
ony = 0 and a Neumann condition on = d. Such a Green’s function, which we will
denote byG4,, has been used for the determination of trapped mode frequencies in perturbed
waveguides, see [41]. Thus

G4, =0 ony=0, (4.2)

G4,
dy

=0 ony=d. (4.3)
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y=2d+n ® ' )
E— y=2d

)’=2d‘77 ® o} ®
—t—  y=d

y=n * . *
—_— =

y:-n ® 0] 0]
— y=d

=-2d+n ) ® o
— y=-2d

=-2d-n ' o] *

Gy G, Gy

Figure 2. Image distributions fo6 y, G p andG ;. The solid circles represent sources"'THo(kr), and the open
circles represent sink%,Ho(kr), wherer is the distance from the singularity.

All these Green’s functions can be expressed in terms of the periodic Green's function. We
have

GY(X,y.m) =GF X,y —n) + G (X, y + ), (4.4)
GH(X,y,m) =G (X, y —n) — GF(X, y +n), (4.5)
Gy (X, y,m) =GH (X, y,m) — G (X, y —2d,n), (4.6)

= GZ(X,y =) — GX5 (X, y + 1), (4.7)

which, sinceGd(X, Y) = G&(X, —Y), can easily be shown to satisfy the appropriate bound-
ary conditions listed above. The distribution of images that these correspond to is shown in
Figure 2.

From (2.13) we obtain the eigenfunction expansions

e_a2m‘X‘/d mimy mmn
Gy (X,y, -2 e cos cos : 4.8
VXY, = Z y y (4.8)
GH(X, y, i sin , 4.9
p(X,y,m) = mX_: d d (4.9)
o0
e_a2m—1|X|/d (m — l)ﬂy (m — ;)7-[)7
G4 (X,y,n) =— sin 2 sin 2= 4.10
M( y.n) Z a1 4 p ( )

m=1
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where we have written

1
2.2 2 2.2\ 2
oy = <% . k2d2> — (kzdz - %) . (4.12)

Kummer’s transformation can be used to accelerate all these series. For example, in exactly
the same way as (2.25) was obtained we can derive the result

o0 e_a2m‘X‘/d mny mn’n

G4 (X =-S5 — (X)) | sin—= sin —, 4.12

(X, y, 1) +mZ=1[ o~ U ( >} y y (4.12)
where

e—mn\X\/d k2|X|d

m(X) = 1 4,13

)= & ( T Zmn) (4.13)
and

17, a7y . a7
S = 4 [Lll(e‘”z”") + Lig(e7™#+/%) — Liy(e 7™ /) — Liy(e™#/9)
T

k2| X |d

+ (Lio(e%+/4) 4 Lip(e™%+/4) — Lip(e™%-/4) — Liz(e‘”z_/"))], (4.14)
whereZ, = |X| +i(y £ ).

The calculation ofG y, Gp andG, by the use of lattice sums is straightforward since the
lattice sums themselves do not depend on the source or field point. Hence (3.7) can easily be
substituted in the right-hand sides of (4.4)—(4.6). For example

GYy(X,y,m) = —%[Ho(kr)wLHo(kr/)

+ > (1)’ S2(0, 2kd)(Jor (kr) COS 20 + Jp (kr') cOS ze’)], (4.15)
¢=0
where (+/, 6") are polar coordinates centred on the pdiat—n), i.e. X = r’ cosd’ and
y+n=r'sing.

If we substitute the integral representations of the normal incidence Green’s function,
Equations (3.3)—(3.5), in (4.4) we obtain

G4(X.y.n) = —‘I—l[Ho(kr)-l-Ho(kr/)]

- . o 2 _ 23
2 f costiky(u — ] costikn(u — ] codkX (u® — 2iu)?] (4.16)
0

i (24— — 1)(u? — 2iu)’

* coshkyy coshkyn
y(e&rd —1)

i 2
= ——[Ho(kr) + Ho(kr')] — — f coskXt dr (4.17)
4 T 0

CoskXt

1 [~ .
= —f (sinhkyy. — cothkyd coshkyy.)coshkyy._ d:.  (4.18)
T Jo



394 C. M. Linton

Herey_. = min(y, n) andy. = max(y, n). The second Hankel function in (4.16) and (4.17)
can of course be incorporated into the integral if we use (2.11). Similarly, we can derive

G4 (X, y.m) = —Ll—l[Ho(k”)—Ho(kl’/)]

2 /00 sinh{ky(u — i) sinh{kn (u — 1)] cOgk X (u? — 2iu)?]
7 Jo (2kd =) — 1) (42 — 2iu)?

B i ) 2 (> sinhkyy sinhkyn
= 4[Ho(kr) Ho(kr')] + - fo y(e&rd 1)

du (4.19)

coskXrtdt (4.20)

CoSkXt

1 [ : .
= ——f (coshkyy. —cothkyd sinhkyy.) sinhkyy_ d (4.21)
T Jo

and these formulas can be used to construct corresponding expressiar{s fimm (4.6)

5. Numerical results

There are many factors which influence the choice of method for the computation of the
Green’s function in a given situation. Which method is the best will depend on the accuracy
required, the number of evaluations to be made, the values of the non-dimensional parameters
X/d,Y/d, kd and Bd, the presence or otherwise of programs for computing the necessary
special functions, and so on. The numerical results below cannot therefore provide all the
information necessary in order to choose the best method for a given problem but they will
help to inform such a decision. All the computations were carried out USINgHEMATICA

version 3.0. In particular this means that all the special functions were available as standard
in-built functions.

For the most part the computations focus on one specific vald¥ af, Y /d), namely
(0,001). This point has been chosen for two reasons. First most computations carried out
in practice are alk = 0 or for small values ofX/d and these are also the places at which
the Green'’s function is hardest to compute accurately. Secondly, the Green’s function can be
difficult to compute near to the singularity &t = ¥ = 0. The point chosen thus provides a
stiff test against which to judge the various methods.

The alternative methods for computing the periodic Green’s function described in Section
2 are summarized in Table 1, which also indicates, for each method, the various truncation
parameters required in the computation and any restrictions on the permitted vaKiesdf
Y. Numerical integrations were performed using standamrMEMATICA packages. Note
that the notatiory_, is used to denote the sums in which the= 0 term is missing.

Computations were carried out for three pairs of valudsiaind8d. First Table 2 displays
results forkd = 2, Bd = ~/2 which corresponds to an incident wave of wavelengihat an
angle of 45 to the grating, secondly results are given in Table 3kibr= 10, 8d = 52
which corresponds to an incident wavelengthraf/5 at an angle of 45to the grating and
finally Table 4 shows results fdtd = 2, Bd = 3 which corresponds to the problem of
determining the frequency of pure Rayleigh—Bloch surface waves along a periodic structure.

For each method an attempt was made to achieve 10 figure accuracy in both the real and
imaginary parts and where this was successful the values listed for the truncation parameters
are the minimum required (where the numbers are large they represent approximate minimum
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values). In any sum of the for@n"f:_ » the parameteM was restricted to be less than or
equal to 5000. If 10 figure accuracy was not achieved with a smaller valie tbe value
shown is that computed withf = 5000. In most applications 5 or 6 significant figures will
suffice but, as pointed out in [42], the validation of numerical results requires comparisons
with benchmarks which should be calculated to a higher degree of accuracy than would
normally be needed. The computations were performed on a Power Macintosh 8600/200 and
the CPU times shown (which are in units of sixtieths of a second) indicate the relative speed
of the various methods.

We will begin by discussing the results shown in Table 2. For the valu&saf Y /d, kd
and 8d used we have?‘g = —0-4595298795- 0-3509130869i, to 10 significant figures.
The poor convergence of the basic image representation and the basic eigenfunction expan-
sion (methods 1 and 2 respectively) is clear, though it is worth noting that the eigenfunction
expansion is superior even though the point at which the Green’s function is being evaluated is
close to the singularity. The use of Kummer’s transformation on the eigenfunction expansion
(methods 3 and 4) leads to series which converge significantly faster, though we still need to
sum about 1300 terms to achieve 10 figure accuracy. For these methods results are also shown
indicating the number of terms required to achieve 6 figure accuracy.

Methods 5 and 6 represent Kummer’s transformation applied to the sum of images and the
sum in method 6 converges faster than the image sum but still very slowly. As well as the
truncation paramete® andN, method 5 contains a parametewhich can be varied to alter

Table 1 Alternative forms for the Green'’s function.

i M
, .
M 1L - > Ho(kry)€™P?
m=—M
) 1 M evmlXIdbnY
de:—M Ym
M N
X=0 1 - 1 1 1 ;
3. —= > ghn¥ (——71)—— > Ko(k|Y — md) e™Pd
M., N 2dm:—M Yim (:331 + kZ)Z 2n m=—N
Y [ erolX] M —7mX| , .
M 4. - |¢ +5+ >/ € —um(X) | €Y || S given by (2.28)
2d Y0 Ym
m=—M
M

| - H 1 e_Vm‘X‘HLdl e|}3mY
M.N.w 5. =7 3 [Holkrm) — Holkin)]€"P¢ — o2 37—t
m=—N

—r — Ym
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Table 1(continued).

i 1 oo [ e kY k(Y—d)u dkY a—k(Y+d)u
Yisd 7. —zHotkr) - E/o BT — okdu T g(B—Rd _ g—kdu
o o1
codkX (uc — 2iu) 2]
X T du
W2 = 2iu)?2
i 1
Y| <d 8. —Hotkr) — o
00 _ e—kyd - ;
X%‘ (cos Bd )coshkyY +isinBd sinhkyY coskX1dr
0 y (coshkyd — cos Bd)
1 [ dhdsany) ginhky|Y| + sinhky(d — |Y
Y| <d 9. —— ! yI¥i+sl v L) CoskXt dr
27 Jo y (coshkyd — cos Bd)
r=d 0 ! H(k)+i SeJe(kr) cost (Z 9)
M. L TR Lot (2
2i k 2i 2i(k? + 282
so-1-2[ciog £]- 2 BN,
T 2p yod pod
2i M 2 2
2 sh (1L Bl
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Table 2. Computed values cd}‘é whenX/d = 0,Y/d = 0-01,kd = 2, Bd = /2. CPU times are in
sixtieths of a second.

Method Parameter values Computed value CPU time

1 M = 5000 —0-4634247358- 0-3530848711i 1642
2 M = 5000 —0-4595441802- 0-3509133120i 1985
3 M =650 N =9 —0-4595298795- 0-3509130869i 208
M =60,N=5 —0-4595302867- 0-3509130662i 18

4 M = 650 —0-4595298795- 0-35091308609i 346
M =60 —0-4595297998- 0-3509130799i 34

5 M =500Q N =300 1 =0-01 —0-4595298795- 0-3509130869i 4517

M =130Q N =600 u =0-005 —0-4595298795- 0-3509130869i 1462
M =100Q N =700 u =0-004 —0-4595298795- 0-3509130869i 1258

M =5 N =320 u = 0-005 —0-4595302671- 0-3509134879i 156

6 M = 5000 —0-4595084678- 0-3509571443i 1760
7 —0-4595298800- 0-3509130868i 28
8 —0-4595298795- 0-35091308609i 227
9 —0-4595298794- 0-35091308609i 69
10 M=80L=4 —0-4595298795- 0-3509130869i 214
M=7,L=3 —0-4595296084- 0-3509130917i 55

11 a=2,M1=3My=2N=7 —04595298795- 0-3509130869i 10
a=2,M1=2,M,=1,N=4  —04595297462- 0-3509130866i 6

the balance between the two sums. Jorgenson and Mittra [17] have carried out computational
experiments to determine the optimal valueuoin certain situations and they report values
of © around 002 as being a typically good choice. Results for three valugs afe shown
here. For = 0-01 we see that the second summation converges much faster than the first and
this indicates that is larger than the optimal value. Decreasingp 0-005 and then to-004
achieves a better balance between the convergence rates of the two summations and the total
number of terms required is reduced. The convergence is still poor in comparison to methods
based on the eigenfunction expansion. If only 6 figure accuracy is required, then we see that,
for small enoughu, most of the sum over: is redundant.

Methods 7, 8 and 9 are integral representations and standaréiBIATICA packages
were used to compute them. The integrand in method 7 has a square root singularity at the
origin which presents no difficulties but the integrals in methods 8 and 9 are Cauchy principal-
value integrals and have square root singularities-at1. To obtain the desired accuracy it
was found necessary to split the range of integration at 1 and perform two separate
numerical integrations. For these reasons method 7 is the quickest of the three, but the result
from this method is slightly inaccurate due to the oscillatory integrand. The loss of accuracy
in the 10th figure in method 9 is probably due to the fact that the evaluation point is closed to
the singularity at¥ = Y = 0, which is not explicit in the formulation.

The convergence of the representation of the Green'’s function in terms of lattice sums is
very rapid indeed, with only 5 terms required, but 80 terms are required to compute the lattice
sums themselves to sufficient accuracy. Of course the formulas for the lattice sums could be
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Table 3. Computed values a4 whenX/d = 0, Y/d = 0-01,kd = 10, Bd = 5/2. CPU times are in
sixtieths of a second.

B

Method Parameter values Computed value CPU time
1 M = 5000 —0-3547064117- 0-1764507543i 2215
2 M = 5000 —0-3538314894- 0-1769343624i 1966
3 M=110QN =7 —0-3538172307 0-1769332383i 351
4 M = 1100 —0-3538172307 0-1769332383i 584
5 M =600, N = 600, = 0-005 —0-3538172307 0-1769332384i 797
6 M = 5000 —0-3538287636- 0-1769125341i 2380
7 —0-3538172309- 0-1769332385i 28
8 failed
9 failed

10 M =300L=5 —0-3538172307 0-1769332383i 804

11 a=1,M1 =3 M,=2,N=78 —0-3538185358- 0-1769332429i 120

a=2,M1=4M»=2,N=28 —0-3538172307 0-1769332383i 25
a=3, M =5M,=1N=18 —0-3538172307 0-1769332383i 12
a=4M,=6My=1N=13 —0-3538172307 0-1769332383i 12
a=5My=7,Mp=0,N=11  —0-3538172307- 0-1769332383i 11
a=6,M1 =9 M,=0,N=9 —0-3538172307 0-1769332383i 11
a=7,M1=10,M>=0,N =8  —0-3538172307 0-1769332383i 11
a=8 M1 =1L M,=0,N=8  —0-3538172307 0-1769332383i 11
a=9, M1 =12 M»=0,N=7  —0-3538172307 0-1769332383i 13
a=10My =13 M, =0,N =7 —0-3538172307- 0-1769332383i 13

Table 4. Computed values OG% whenX/d = 0,Y/d = 0-01,kd = 2, 8d = 3. CPU times are in
sixtieths of a second.

Method Parameter values Computed value CPU time
1 M = 5000 —0-7607250513- 0-001633152396i 1658
2 M = 5000 —0-7617606900- 0-0006391902645i 1977
3 M =140Q N = 12 —0-7617463954- 0-0006387129177i 429
4 M = 1500 —0-7617463954- 0-0006387129177i 811
5 M =120Q N =650 © = 0-005 —0-7617463956- 0-0006387129296i 1419
6 M = 5000 —0-7617785437- 0-0005770861412i 1734
7 —0-7617463953- 0-0006387134470i 28
8 —0-7617463954- 0-0006387129177i 219
9 —0-7617463954- 0-0006387129177i 143

10 M=200L=4 —0-7617463954- 0-0006387129166i 479

11 a=2, M1 =3 My=2,N=7 —07617463954- 0-0006387129177i 10
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accelerated further if required. For a small number of evaluations of the Green'’s function the
lattice sum approach is not as efficient as the integral representations of methods 7 and 9, but
since the lattice sums do not depend on the place at which the Green'’s function is evaluated,
and since the vast majority of the time using the method is spent evaluating these sums, the
method will become competitive if a sufficient number of evaluations are required for a given
kd andgd. For the values of the parameters considered here, the lattice sum approach becomes
competitive with method 7 when the number of evaluations required is greater than about
10. When less accuracy is required we see that the number of terms required to calculate the
lattice sums themselves decreases rapidly, but the number of terms in the series for the Green'’s
function does not.

Finally we have Ewald’s method which, for the parameter values considered here, is the
quickest of all the methods listed in the table. A sensible choice for the paramesar be
obtained by considering the asymptotics of the two series to be evaluated. It can be shown
that, whenX = 0, the terms in the first series behave like? exp{—(mn/a)?}, whereas
those in the second series decay like? exp{—(ma)?}. If we balance the exponentials than
a ~ /m is suggested as a reasonable choice. Computations suggest that this approximation
underestimates the best valuexdfvhich of course depends on the valued'¢#l, kd andSd)
anda = 2 has been used. A more detailed discussion of the best choices @fiven below
for the higher frequency case, where it matters more. With 2 we find that less than 50
terms are required to achieve the desired 10 figure accuracy. For 6 figure accuracy this number
is reduced to 20.

Table 3 shows results corresponding to a higher valueidi.e. a higher frequency), but
with the same rati@/g. for this case we havé = —0-3538172307- 0-1769332383i to 10
significant figures. Many of the comments made about Table 2 apply here also. As a general
rule the Green'’s function is mare difficult to compute in this case, though there are exceptions.

The two methods that rely on computing Cauchy principal-values failed in this case (in
which there are now two poles on the real axis), though it may well be possible to use more
sophisticated integration techniques to get these methods to work for these parameter values.
In view of the results for methods 7 and 11 there seems little point however.

Ewald’s method is again the best. The table shows the effect of vasyiimghis case and
we see that if: is too small the summation of exponential integrals becomes slowly convergent
and accurate results difficult to obtain. The optimum value & somewhere around 6 or 7
though there is little difference in CPU time over the whole range @ < 10. If more than
about 100 evaluations of the Green'’s function are required, then the lattice sum approach is
the most efficient.

An example in whichB > k is shown in Table 4. In this case the integrals in methods 8 and
9 are no longer principal-value integrals but they still take considerably longer to evaluate than
that in method 7, mainly due to the fact that the integrand still has a square root singularity
atr = 1. Once again Ewald’s method is the best of the alternatives unless a large number of
evaluations oG% are required.

As X/d increases from zero methods based on the eigenfunction expansion become pro-
gressively better. Table 5 shows how the basic eigenfunction expansion compares with Ewald’s
method for two values ok /d, namely 01 and 05, the value off /d is taken to be & in both
cases andd = 2, Bd = /2 as in Table 2. It is clear that &t/d = 0-1 the two methods are
roughly comparable and that f&f/d = 0-5 the eigenfunction expansion is much better. Note
that this is the unaccelerated form of the eigenfunction expansion and that we can achieve
even faster convergence using method 4, (method 3 is not applicabtg dos 0).
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Table 5. Computed values oﬂ‘é whenY/d = 0.5, kd = 2, 8d = /2. CPU times are in sixtieths of a
second.

X/d  Method Parameter values Computed value CPU time
01 2 M =32 03306805081 0-1778394385i 12

11 a=2,M1=2,My=2,N=7 03306805081 0-1778394385i 10
0-5 2 M=7 03596087433~ 0-04626396800i 3

11 a=2, M1 =3, My=2,N=7 03596087433~ 0-04626396800i 10

6. Concluding remarks

In this paper we have summarized the various different analytic techniques that can be used to
speed up the numerical evaluation of the two-dimensional Green’s fun¢tigf, Y), for the
Helmholtz equation in periodic domains. Héfdas the distance between the source and field
points in the direction of periodicity an#l is the separation in the perpendicular direction.

The most obvious way to represent the Green’s function is as an image series, but this is
hopeless from a numerical point of view. A representation as an eigenfunction expansion was
considered next and such an approach is extremely efficient projieid large, but poor
when|X| is small, which is often the case in applications. Whghis small, the convergence
of the eigenfunction expansion can be accelerated if Kummer’s transformation is applied, and
we have shown that significant improvements in performance can be achieved.

A number of different integral representations @rave also been considered and were
found to be very attractive alternatives whegiy is small. The lattice sum technique, which
results from the application of Graf’s addition theorem to the image series representation,
leads to expressions which take rather long to compute, but which have the distinct advantage
that most of the computational effort is expended in computing series coefficients which do
not depend on the position at which the Green’s function is to be evaluated. Hence, if a large
number of evaluations @& are required, calculations based on lattice sums may be the most
appropriate.

Finally, we have considered Ewald summation, a method commonly used in the theory of
crystal lattices. it turns out that this technique is particularly well-suited to the problem at hand
and provides the most efficient method for the computation of the Green’s function,| When
is small.

In summary, there are three methods which would seem to be worthy of consideration.
If only a small number of evaluations @f are required, then the eigenfunction expansion
(accelerated if necessary) is best for sufficiently largé whereas in the complementary
regime in which|X| is small, the expression from Ewald’s method is the best. If a large
number of evaluations are needed, then the lattice sum approach should be considered, though
the number of evaluations at which this method becomes quicker than its competitors depends
on the parametersandg.

Of course, in most applications it is not only the Green’s function that is required, but
also its first spatial derivative. These can easily be computed from the rapidly convergent
expressions folG given in this paper, simply by differentiating tleterm by term, though
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the convergence of the resulting series will not be as good. This is one of the reasons that the
Green'’s function has been computed to such a high accuracy in Section 5, since the same series
will be capable of delivering acceptable accuracy for the derivative§ af any practical
application.
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